(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(s(0)) → 0
log(s(s(x))) → s(log(s(quot(x, s(s(0))))))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(0', y) → 0'
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0'
if_minus(false, s(x), y) → s(minus(x, y))
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(s(0')) → 0'
log(s(s(x))) → s(log(s(quot(x, s(s(0'))))))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(0', y) → 0'
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0'
if_minus(false, s(x), y) → s(minus(x, y))
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(s(0')) → 0'
log(s(s(x))) → s(log(s(quot(x, s(s(0'))))))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
if_minus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
le,
minus,
quot,
logThey will be analysed ascendingly in the following order:
le < minus
minus < quot
quot < log
(6) Obligation:
Innermost TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
0',
y) →
0'minus(
s(
x),
y) →
if_minus(
le(
s(
x),
y),
s(
x),
y)
if_minus(
true,
s(
x),
y) →
0'if_minus(
false,
s(
x),
y) →
s(
minus(
x,
y))
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
s(
0')) →
0'log(
s(
s(
x))) →
s(
log(
s(
quot(
x,
s(
s(
0'))))))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
if_minus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
le, minus, quot, log
They will be analysed ascendingly in the following order:
le < minus
minus < quot
quot < log
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
le(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
le(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
true
Induction Step:
le(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
0',
y) →
0'minus(
s(
x),
y) →
if_minus(
le(
s(
x),
y),
s(
x),
y)
if_minus(
true,
s(
x),
y) →
0'if_minus(
false,
s(
x),
y) →
s(
minus(
x,
y))
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
s(
0')) →
0'log(
s(
s(
x))) →
s(
log(
s(
quot(
x,
s(
s(
0'))))))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
if_minus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
minus, quot, log
They will be analysed ascendingly in the following order:
minus < quot
quot < log
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol minus.
(11) Obligation:
Innermost TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
0',
y) →
0'minus(
s(
x),
y) →
if_minus(
le(
s(
x),
y),
s(
x),
y)
if_minus(
true,
s(
x),
y) →
0'if_minus(
false,
s(
x),
y) →
s(
minus(
x,
y))
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
s(
0')) →
0'log(
s(
s(
x))) →
s(
log(
s(
quot(
x,
s(
s(
0'))))))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
if_minus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
quot, log
They will be analysed ascendingly in the following order:
quot < log
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol quot.
(13) Obligation:
Innermost TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
0',
y) →
0'minus(
s(
x),
y) →
if_minus(
le(
s(
x),
y),
s(
x),
y)
if_minus(
true,
s(
x),
y) →
0'if_minus(
false,
s(
x),
y) →
s(
minus(
x,
y))
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
s(
0')) →
0'log(
s(
s(
x))) →
s(
log(
s(
quot(
x,
s(
s(
0'))))))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
if_minus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
log
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol log.
(15) Obligation:
Innermost TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
0',
y) →
0'minus(
s(
x),
y) →
if_minus(
le(
s(
x),
y),
s(
x),
y)
if_minus(
true,
s(
x),
y) →
0'if_minus(
false,
s(
x),
y) →
s(
minus(
x,
y))
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
s(
0')) →
0'log(
s(
s(
x))) →
s(
log(
s(
quot(
x,
s(
s(
0'))))))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
if_minus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(17) BOUNDS(n^1, INF)
(18) Obligation:
Innermost TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
0',
y) →
0'minus(
s(
x),
y) →
if_minus(
le(
s(
x),
y),
s(
x),
y)
if_minus(
true,
s(
x),
y) →
0'if_minus(
false,
s(
x),
y) →
s(
minus(
x,
y))
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
s(
0')) →
0'log(
s(
s(
x))) →
s(
log(
s(
quot(
x,
s(
s(
0'))))))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
if_minus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(20) BOUNDS(n^1, INF)